Fully integrated CMOS GPS RADIO


Computer Engineering
electronics Engineering
Civil Engineering

GLOBAL Positioning System (GPS) receivers for the consumer market require solutions that are compact, cheap, and low power. Manufacturers of cellular telephones, portable computers, watches, and other mobile devices are looking for ways to embed GPS into their products. Thus, there is a strong motivation to provide highly integrated solutions at the lowest possible power consumption. GPS radios consist of a front-end and a digital baseband section incorporating a digital processor. While for the baseband processor, cost-reduction reasons dictate the use of the most dense digital CMOS technology, for the front-end, the best option in terms of power consumption is a SiGe BiCMOS technology. This explains why several commercial GPS radios consist of dual or multichip systems using the best technology option for the front-end and baseband processor. On the other hand, the implementation of a stand-alone GPS radio into a single chip in CMOS technology is appealing in terms of cost, and would speed up the integration of GPS capabilities into mobile products. This motivated the development of GPS macro blocks and radios in CMOS technology [1], [2]. However, the cost effectiveness of this solution depends on both reduction of external components and die area of the GPS radio. Since the silicon area of RF CMOS circuits, including on-chip inductors, does not shrink at the same rate as technology scaling, the reduction of the total cost poses a severe challenge. This paper describes the design and measurement of a fully integrated CMOS GPS receiver targeting active antenna applications with an architecture geared to highest integration and minimal silicon area at the lowest possible power consumption (i.e., comparable to the best ones available [1], [2]). The paper is organized as follows. The GPS system, architecture, and specifications are summarized in Section II, and the chip design is reported in Section III. Implementation details and experimental measurements are reported, respectively, in Sections IV and V. Finally, in Section VI, conclusions and comparison with the state of the art are given. 2. ARCHITECTURE AND SPECIFICATIONS The GPS signal code is a direct-sequence spread spectrum, and the type of spread spectrum employed by GPS is known as binary phase-shift keying direct-sequence spread spectrum (BPSK DSSS). In a spread-spectrum system, data are modulated onto the carrier such that the transmitted signal has a larger bandwidth than the information rate of the data. The term




No comments:

Post a Comment